<img alt="" src="https://secure.perk0mean.com/173045.png" style="display:none;">

Great research starts with great data.

Learn More
More >
Patent Analysis of

3D Printing System

Updated Time 15 March 2019

Patent Registration Data

Publication Number

US20170165915A1

Application Number

US15/441871

Application Date

24 February 2017

Publication Date

15 June 2017

Current Assignee

TYCO ELECTRONICS (SHANGHAI) CO. LTD.,TE CONNECTIVITY CORPORATION

Original Assignee (Applicant)

TYCO ELECTRONICS (SHANGHAI) CO. LTD.,TE CONNECTIVITY CORPORATION

International Classification

B29C67/00,B33Y40/00,B33Y30/00

Cooperative Classification

B29C67/0085,B33Y40/00,B33Y30/00,B29C64/106,B29C64/112

Inventor

DENG, YINGCONG,XIN, LIMING,ZHANG, DANDAN,YI-LU, ROBERTO FRANCISCO,HU, LVHAI,LIU, YUN

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

3D Printing System 3D Printing System
See all 2 images

Abstract

A 3D printing system is disclosed. The 3D printing system has a print head and a positioning platform. The positioning platform supports and positions a product printed by the print head. The positioning platform is movable with respect to the print head in a first direction, a second direction, and a third direction perpendicular to each other. The positioning platform is also rotatable with respect to the print head about at least two of the first, second, and third directions.

Read more

Claims

1. A 3D printing system, comprising: a print head; and a positioning platform supporting and positioning a product printed by the print head, the positioning platform movable with respect to the print head in a first direction, a second direction, and a third direction perpendicular to each other and rotatable with respect to the print head about at least two of the first, second, and third directions.

2. The 3D printing system of claim 1, further comprising a movement device rotating the positioning platform about at least one direction.

3. The 3D printing system of claim 2, wherein the print head is stationary and the movement device moves the positioning platform in the first direction, the second direction and the third direction and rotates the positioning platform about at least two of the first, second, and third directions.

4. The 3D printing system of claim 3, wherein the movement device is a robot having at least five degrees of freedom.

5. The 3D printing system of claim 4, wherein the movement device rotates the positioning platform about the first direction, the second direction, and the third direction.

6. The 3D printing system of claim 4, wherein the robot is a planar articulated robot, a six-axis robot, a Cartesian coordinate robot, a serial robot, a parallel robot, or a serial-parallel robot.

7. The 3D printing system of claim 2, further comprising a robot moving the print head in at least one direction and rotating the print head about at least one direction.

8. The 3D printing system of claim 7, wherein the robot has at least three degrees of freedom.

9. The 3D printing system of claim 8, wherein the robot moves the printing head in the first direction, the second direction, and the third direction.

10. The 3D printing system of claim 8, wherein the robot is a planar articulated robot, a six-axis robot, a Cartesian coordinate robot, a serial robot, a parallel robot, or a serial-parallel robot.

11. The 3D printing system of claim 7, wherein the movement device is a spherical movement device.

12. The 3D printing system of claim 11, wherein the positioning platform is mounted on the spherical movement device and the spherical movement device rotates the positioning platform about the first direction and the second direction.

13. The 3D printing system of claim 12, wherein the spherical movement device has a first rotation drive with an output shaft rotating about the first direction and a second rotation drive with an output shaft rotating about the second direction.

14. The 3D printing system of claim 13, wherein the spherical movement device has a first link with a first end connected to the output shaft of the first rotation drive, a second link with a first end pivotally connected to the positioning platform and an opposite second end pivotally connected to a second end of the first link, and a third link with a first end connected to the output shaft of the second rotation drive and an opposite second end pivotally connected to the positioning platform.

15. The 3D printing system of claim 14, wherein each of the first link, the second link, and the third link is shaped as a quarter-arc.

16. The 3D printing system of claim 14, wherein a first pivotal axis at a joint of the first link and the second link, a second pivotal axis at a joint of the second link and the positioning platform, a third pivotal axis at a joint of the third link and the positioning platform, an first axis of the output shaft of the first rotation drive, and a second axis of the output shaft of the second rotation drive intersect at a same point.

17. The 3D printing system of claim 16, wherein the same point is located at a geometric center of the positioning platform.

18. The 3D printing system of claim 17, wherein the first rotation drive is mounted on a first vertical mounting plate mounted on a base and the second rotation drive is mounted on a second vertical mounting plate mounted on the base.

19. The 3D printing system of claim 7, wherein the movement device is a second robot having at least two degrees of freedom.

20. The 3D printing system of claim 8, further comprising a material supply unit mounted on the robot providing a material deposited by the print head to form the product.

21. The 3D printing system of claim 8, further comprising a material supply unit spaced apart from the robot providing a material deposited by the print head to form the product.

22. The 3D printing system of claim 1, wherein the product is entirely formed by the 3D printing system.

23. The 3D printing system of claim 1, wherein a blank is previously formed as one portion of the product by non-3D printing, and another portion of the product is formed on the blank by the 3D printing system.

24. The 3D printing system of claim 7, wherein the movement device and the robot are mounted on a base.

Read more

Claim Tree

  • 1
    1. A 3D printing system, comprising:
    • a print head
    • and a positioning platform supporting and positioning a product printed by the print head, the positioning platform movable with respect to the print head in a first direction, a second direction, and a third direction perpendicular to each other and rotatable with respect to the print head about at least two of the first, second, and third directions.
    • 2. The 3D printing system of claim 1, further comprising
      • a movement device rotating the positioning platform about at least one direction.
    • 22. The 3D printing system of claim 1, wherein
      • the product is entirely formed by the 3D printing system.
    • 23. The 3D printing system of claim 1, wherein
      • a blank is previously formed as one portion of the product by non-3D printing, and another portion of the product is formed on the blank by the 3D printing system.
See all 1 independent claims

Description

FIELD OF THE INVENTION

The present invention relates to a printing system, and more particularly, to a threedimensional (3D) printing system.

BACKGROUND

In the prior art, 3D printing systems generally include a robot and a print head mounted on an end of the robot. Materials are sprayed or deposited from the print head onto a positioning platform, forming a product having a desired shape on the positioning platform as the robot moves the print head based on a predetermined route. 3D printing is thus fundamentally different from conventional machining; in 3D printing, a desired shape is created by adding materials instead of removing materials as in machining.

In the prior art, the robot for manipulating the print head can only move in X, Y and Z directions perpendicular to each other and the positioning platform for supporting the product made from the materials is stationary. Additionally, the product to be printed is divided into a plurality of two-dimensional (2D) horizontal layers in the Z direction. The robot manipulates the printing head to move in a horizontal plane defined by X and Y to print the plurality of 2D horizontal layers successively. The end product is created by successively overlaying the plurality of 2D horizontal layers in the Z direction.

Since such existing 3D printing systems only move in X, Y and Z directions perpendicular to each other, only the position of the print head may be adjusted with respect to the positioning platform. The angle of the print head with respect to the positioning platform cannot be adjusted. Therefore, in such existing 3D printing systems, the print head only can be moved over a 2D plane or a 2D curve, rather than a 3D curved surface or a 3D curve, thus limiting its usage.

SUMMARY

An object of the invention, among others, is to provide a 3D printing system in which the print head may be moved over a 3D curved surface or a 3D curve. The 3D printing system has a print head and a positioning platform. The positioning platform supports and positions a product printed by the print head. The positioning platform is movable with respect to the print head in a first direction, a second direction, and a third direction perpendicular to each other. The positioning platform is also rotatable with respect to the print head about at least two of the first, second, and third directions.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of example with reference to the accompanying figure, of which:

FIG. 1 is a perspective view of a 3D printing system according to the invention.

DETAILED DESCRIPTION OF THE EMBODIMENT(S)

Exemplary embodiments of the present invention will be described hereinafter in detail with reference to the attached drawings, wherein like reference numerals refer to like elements. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that the present disclosure will be thorough and complete, and will fully convey the concept of the disclosure to those skilled in the art.

A 3D printing system according to the invention is shown generally in FIG. 1. The 3D printing system comprises a robot 100, a print head 200, a positioning platform 300, and a movement device 500. As shown in FIG. 1, a first direction X and a second direction Y define a horizontal plane, and a third direction Z refers to a vertical direction perpendicular to the horizontal plane.

The robot 100 has at least three degrees of freedom. The robot 100 may be, for example, a planar articulated robot, a six-axis robot, a Cartesian coordinate robot, a serial robot, a parallel robot or a serial-parallel robot.

The movement device 500, as shown in FIG. 1, is a spherical movement device comprising a first rotation drive 510, a second rotation drive 520, a first link 501, a second link 502, and a third link 503. The first rotation device 510 has an output shaft rotating about the first direction X. The second rotation drive 520 has an output shaft rotating about the second direction Y perpendicular to the first direction X. The first link 501 has a first end connected to the output shaft of the first rotation drive 510. The second link 502 has a first end pivotally connected to the positioning platform 300 and an opposite second end pivotally connected to a second end of the first link 501. The third link 503 has a first end connected to the output shaft of the second rotation drive 520 and an opposite second end pivotally connected to the positioning platform 300. In the shown embodiment, each of the first link 501, second link 502, and third link 503 is shaped as a quarter-arc.

A pivotal axis at a joint of the first link 501 and the second link 502, a pivotal axis at a joint of the second link 502 and the positioning platform 300, a pivotal axis at a joint of the third link 503 and the positioning platform 300, an axis of the output shaft of the first rotation drive 510, and an axis of the output shaft of the second rotation drive 520 intersect at a same point located at a geometric center of the positioning platform 300.

The first rotation drive 510 and the second rotation drive 520, as shown in FIG. 1, are mounted on a first vertical mounting plate 11 and a second vertical mounting plate 12, respectively. The first vertical mounting plate 11 and the second vertical mounting plate 12 are mounted on a base 10. The first rotation drive 510 and the second rotation drive 520 may each comprise a motor.

In another embodiment, the movement device 500 is a multi-freedom robot such as a planar articulated robot, a six-axis robot, a Cartesian coordinate robot, a serial robot, a parallel robot or a serial-parallel robot.

As shown in FIG. 1, the robot 100 and the movement device 500 are mounted on the base 10. The print head 200 is mounted on an end of the robot 100. The positioning platform 300 is mounted on the movement device 500.

The use of the 3D printing system according to the invention will now be described in greater detail.

The robot 100 is adapted to move the print head 200 in the first direction X, the second direction Y, and the third direction Z perpendicular to each other, so as to print a desired product on the positioning platform 300 by the print head 200. Materials 400 are deposited from the print head 200 onto the positioning platform 300 as the robot 100 moves the print head 200 to form the product. The materials 400 may be provided by a material supply unit mounted on the end of the robot 100 adjacent the print head 200. Alternatively, the materials 400 may be provided by a remote material supply unit spaced apart from the robot 100.

The movement device 500 is adapted to drive the positioning platform 300 to rotate about the first direction X and the second direction Y perpendicular to the first direction X while the materials 400 are deposited. Thus, the angle of the print head 200 with respect to the positioning platform 300 may be adjusted. With the cooperation of the movement device 500 and the robot 100, the print head 200 may move over a 3D curved surface or a 3D curve with respect to the positioning platform 300 and/or materials 400 provided on the positioning platform 300.

In an embodiment, the entire product is formed by the 3D printing system. Alternatively, a blank may be previously formed as one portion of the product by means of non-3D printing, for example, by means of casting, and the other portion of the product is then formed on the blank by the 3D printing system.

In another embodiment, the print head 200 is stationary and the movement device 500 drives the positioning platform 300 to move in the first direction X, the second direction Y, and the third direction Z perpendicular to each other, and to rotate about at least two of the first direction X, the second direction Y, and the third direction Z. That is, in this embodiment, the movement device 500 has at least five degrees of freedom.

In another embodiment, the print head 200 is stationary and the movement device 500 drives the positioning platform 300 to move in the first direction X, the second direction Y, and the third direction Z perpendicular to each other, and to rotate about the first direction X, the second direction Y, and the third direction Z. That is, in this embodiment, the movement device 500 has at least six degrees of freedom.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

37.0/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

45.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

63.96/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

58.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

22.03/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers—and asking the right questions—easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales